

Technical information

Description:

new "Hycocon DTZ" old "Hycocon DP"

Differential pressure regulator "Hycocon DTZ" Measuring technique "eco"

Tender specification:

Oventrop differential pressure regulator "Hycocon DP" for a steady control of the set nominal value as proportional regulator without auxiliary energy.

Infinitely adjustable nominal value between 50 and 300 mbar or between 250 and 600 mbar. The nominal value can be locked and be read-off from the outside at any time. With direct isolation and a facility for draining and filling, installation in the return pipe, straight pattern model. Valve disc with soft seal.

Connection thread M 30 x 1.5

Valve body, bonnet, regulator housing and inner parts made of dezincification resistant (DZR) brass, O-rings, washer and diaphragm made of EPDM.

Supplied with insulation shells (as packaging) suitable for temperatures up to 80 $^\circ\text{C}.$

Max. operating temperature ts:	120 °C
Min. operating temperature ts:	-10 °C
Max. operating pressure ps:	16 bar (PN 16)
Max. differential pressure Δp_V :	1.5 bar
Length of capillary:	1 m

Differential pressure regulator both ports with female thread according to EN 10226

Size		Item no.	Item no.
	k _{vs}	50-300 mbar	250-600 mbar
DN 15	1.7	106 20 04	106 22 04
DN 20	2.7	106 20 06	106 22 06
DN 25	3.6	106 20 08	106 22 08
DN 32	6.8	106 20 10	106 22 10
DN 40	10.0	106 20 12	106 22 12
DN 50		106 20 16	106 22 16

Differential pressure regulator both ports with male thread and collar nut

Size		Item no.	Item no.
	k _{vs}	50-300 mbar	250-600 mbar
DN 15	1.7	106 21 04	106 23 04
DN 20	2.7	106 21 06	106 23 06
DN 25	3.6	106 21 08	106 23 08
DN 32	6.8	106 21 10	106 23 10
DN 40	10.0	106 21 12	106 23 12
DN 50		106 21 16	106 23 16

Advantages:

- all functioning components on one level
- infinitely adjustable nominal value between 50 and 300 mbar/ 250 and 600 mbar
- very good optical display of the set nominal value
- nominal value can be locked
- simple isolation of the riser
- with fill and drain tool (accessory) for filling and draining the riser
- pressure balanced valve disc
- existing valves of the series "Hycocon VTZ/HTZ/ETZ" sized DN 15 up to DN 40 can be converted without draining the system

Differential pressure regulator "Hycocon DTZ"

Example of installation:

Installation in the return pipe

Performance data:

DN 15: kvs = 1.7

DN 25: kvs = 3.6

DN 40: kvs = 10.0

Example of installation:

The recommended application range is determined by the minimum flow rate (qm_{min}) and the maximum flow rate (qm_{max}). Design of the regulator can be carried out with the help of the charts illustrated above. Depending on the flow rate and the differential pressure, the suitable regulator can be determined. The maximum flow rate of the installation to be expected may not exceed the flow rate of the regulator (qm_{max}). As for the curve $qm_{nom.}$, the differential pressure of the installation corresponds to the set nominal value.

DN 20: kvs = 2.7

DN 32: kvs = 6.8

DN 50

Chart in preparation

Smallest p-deviation with average nominal setting (qm_{nom}).

The curve $qm_{nom.}$ -10% shows the values with a p-deviation of 10%.

The charts are valid for the condition $\Delta po \ge 2 \times \Delta p$.

To guarantee a sufficient valve authority of the differential pressure regulator, Δpo should be $\geq 1.5 \text{ x} \Delta p$.

Note: Operation of the differential pressure regulator is guaranteed even below this value.

Function:

Oventrop differential pressure regulators are proportional regulators working without auxiliary energy. They are designed for use in heating or cooling systems to maintain a constant differential pressure within a necessary proportional band. The spring for nominal pressure can be set with the help of the nominal value setting device, so that values between 50 and 300 mbar/250 and 600 mbar can be set. The outer chamber of the diaphragm regulator must be connected to the capillary, and the capillary to the supply pipe. With the differential pressure in the installation increasing, the valve disc closes down and opens as the differential pressure falls. The excess differential pressure is reduced by the differential pressure regulator, until the set differential pressure in the pipe is reached.

Installation of the regulator:

Oventrop differential pressure regulators "Hycocon DTZ" are installed in the return pipe. Installation is possible in any position provided the direction of flow conforms with the direction of the arrow on the valve body. Before installing the regulator into the pipework, it is advisable to flush the latter thoroughly. The installation of an Oventrop "Y" type strainer is recommended. The capillary should be fitted above or horizontal to the supply pipe, to avoid blockage of the capillary by small particles, it should not be connected to the supply pipe from underneath.

Setting the nominal value:

The nominal value of the Oventrop differential pressure regulator is infinitely adjustable between 50 and 300 mbar and 250 and 600 mbar. The required value can be set by turning the handwheel and can be secured with the help of a locking pin (accessory).

Function of the manual isolation:

The Oventrop differential pressure regulator "Hycocon DTZ" may be closed manually e.g. when servicing the system, and additionally acts as an isolating valve. To carry out manual isolation, turn the handwheel clockwise until stop beyond the nominal value 50/250 mbar. The connection pipe of the upper diaphragm chamber must be connected to the supply pipe.

If the regulator is to be reopened after servicing, turn the handwheel anticlockwise to the nominal value. A perfect regulation is only possible in this position.

Draining and filling of the installation:

The installation may be drained or filled with the help of an additional fill and drain tool. To do so, a 1/2" hose may be connected to the fill and drain tool (G 3/4 collar nut).

Accessories:

	Item no.
Adapter (for the connection of the capillary to a G $^{3}\!\!\!/$ flat sealing male thread)	106 20 90
Locking pin with sealing wire	106 20 92
Fill and drain tool	106 17 91
Adapter (for the connection of the capillary to the measuring technique "classic"	
G ¹ / ₄ connection)	160 93 02
Capillary 2 m long	106 20 95

Dimensions:

Subject to technical modification without notice. Product range 3 ti 129-1/20/MW Edition 2012 OVENTROP GmbH & Co. KG Paul-Oventrop-Straße 1 D-59939 Olsberg Telephone +49(0) 2962 82-0 Telefax +49(0) 2962 82-450 E-Mail mail@oventrop.de Internet www.oventrop.de

For an overview of our global presence visit www.oventrop.de.